Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change
نویسندگان
چکیده
Much of Africa is among the world’s regions with lowest yields in staple food crops, and climate change is expected to make it more difficult to catch up in crop production in particular in the long run. Various agronomic measures have been proposed for lifting agricultural production in Africa and to adapt it to climate change. Here, we present a projection of potential climate change impacts on maize yields under different intensification options in Sub-Saharan Africa (SSA) using an agronomic model, GIS-based EPIC (GEPIC). Fallow and nutrient management options taken into account are (a) conventional intensification with high mineral N supply and a bare fallow, (b) moderate mineral N supply and cowpea rotation, and (c) moderate mineral N supply and rotation with a fast growing N fixing tree Sesbania sesban. The simulations suggest that until the 2040s rotation with Sesbania will lead to an increase in yields due to increasing N supply besides improving water infiltration and soils’ water holding capacity. Intensive cultivation with a bare fallow or an herbaceous crop like cowpea in the rotation is predicted to result in lower yields and increased soil erosion during the same time span. However, yields are projected to decrease in all management scenarios towards the end of the century, should temperature increase beyond critical thresholds. The results suggest that the effect of eco-intensification as a sole means of adapting agriculture to climate change is limited in Sub-Saharan Africa. Highly adverse temperatures would rather have to be faced by improved heat tolerant cultivars, while strongly adverse decreases in precipitation would have to be faced by expanding irrigation where feasible. While the evaluation of changes in agro-environmental variables like soil organic carbon, erosion, and soil humidity hints that these are major factors influencing climate change resilience of the field crop, no direct relationship between these factors, crop yields, and changes in climate variables could be identified. This will need further detailed studies at the field and regional scale.
منابع مشابه
The Impact of Climate Change on Crop Yields in Sub-Saharan Africa
This study estimates of the impact of climate change on yields for the four most commonly grown crops (millet, maize, sorghum and cassava) in Sub-Saharan Africa (SSA). A panel data approach is used to relate yields to standard weather variables, such as temperature and precipitation, and sophisticated weather measures, such as evapotranspiration and the standardized precipitation index (SPI). T...
متن کاملAdaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa
Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find...
متن کاملIdentifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa.
Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops--green manures--and agroforestry--legume improved tr...
متن کاملEffects of climate change and cultivar on summer maize phenology
To identify countermeasures to the effects of climate warming on crop production, we mustunderstand the changes in crop phenology and the relationships between phenology and climatechange and cultivar. We used summer maize phenological and climate data in the North ChinaPlain, collected from 1981 to 2010. This study analyzed the spatiotemporal trends inphenological data and lengths of different...
متن کاملWIDER Working Paper No. 2013/110 Trends and patterns of land use change and international aid in sub-Saharan Africa
The sub-Saharan Africa region recorded the fastest conversion of forest land to agriculture in the past 20 years. The region also has the widest yield gap and together with Latin America and Caribbean has the largest unused arable land. However, there are wide variations across countries and this offers valuable lessons on the drivers of agricultural intensification and land use dynamics. This ...
متن کامل